Пропустить навигацию.
Ученье - свет...

геофизическое оборудование

  • warning: Creating default object from empty value in /home/landv0/public_html/landviser.net/sites/all/modules/i18n/i18ntaxonomy/i18ntaxonomy.pages.inc on line 34.
  • warning: Creating default object from empty value in /home/landv0/public_html/landviser.net/sites/all/modules/biblio/biblio.module on line 1922.
  • user warning: Table 'landv0_drp626net2.biblio_citeproc_styles' doesn't exist query: SELECT parent,csl FROM biblio_citeproc_styles WHERE filename = 'ama.csl' in /home/landv0/public_html/landviser.net/sites/all/modules/biblio/modules/CiteProc/biblio_citeproc.module on line 88.
  • Biblio-CiteProc could not fetch the style file: ama.csl from the database.

Электрофизика почв и не только

Семинар "Электрофизика почв и не только..." состоится в рамках Всероссийского Фестиваля Науки в МГУ им. Ломоносова, Москва, Воробьевы Горы.

13 Октября 2012 12:05-12:30

Лекция посвящена методам обследования почв с помощью электричества, вертикальному зондированию и профилированию, применению для изучения биологической составляющей почв и оценке экологического состояния почв. Также рассматриваются возможности использования данного метода для поиска полезных ископаемых.

Целевая аудитория:
будет интересно всем
Телефон для справок в дни Фестиваля:
Поздняков Лев Анатольевич, кандидат биологических наук

Анизотропия свойств некоторых антропогенно-преобразованных почв подзолистого типа

Pozdnyakov, A. I., Rusakov, A.V., Shalaginova, S.M., and A.D. Pozdnyakova. “Anizotropiya Svoystv Nekotoryh Antropogenno-Preobrazovannyh Pochv Podzolistogo Tipa.” Pochvovedenie 11, no. 11 (November 2009): 27–38.


Instrumentation, Electrical Resistivity (Solid Earth Geophysics Encyclopedia)

Our unique LandMapper device was featured in 2nd edition of Solid Earth Geophysics Encyclopedia as the best small scale portable and accurate electrical resistivity/conductivity meter. To cite this publication use:

Loke, M.H., J.E. Chambers, and O. Kuras. “Instrumentation, electrical resistivity.” In Solid Earth Geophysics Encyclopedia (2nd Edition), Electrical & Electromagnetic, Gupta, Harsh (ed), 599–604. 2nd ed. Berlin: Springer, 2011. http://www.landviser.net/webfm_send/76

The PDF of the article is attached to this webpage. Continue reading excert from the Encyclopedia....


Instrumentation, Electrical Resistivity

  • Electrical survey. Mapping subsurface resistivity by injecting an electrical current into the ground.
  • Resistivity meter. An instrument used to carry out resistiv­ity surveys that usually has a current transmitter and volt­age-measuring circuitry.
  • Electrode. A conductor planted into the ground through which current is passed, or which is used to measure the voltage caused by the current.
  • Apparent resistivity. The apparent resistivity is the resistiv­ity of an equivalent homogeneous earth model that will give the same potential value as the true earth model for the same current and electrodes arrangement.
  • Multi-core cable. A cable with a number of independent wires.


The resistivity survey method is more than 100 years old and is one of the most commonly used geophysical explo­ration methods (Reynolds, 1997). It has been used to image targets from the millimeter scale to structures with dimensions of kilometers (Linderholm et al., 2008; Storz et al., 2000). It is widely used in environmental and engi­neering (Dahlin, 2001; Chambers et al., 2006) and mineral exploration (White et al., 2001; Legault et al., 2008) sur­veys. There have been many recent advances in instru­mentation and data interpretation resulting in more efficient surveys and accurate earth models. In its most basic form, the resistivity meter injects a current into the ground through two metal stakes (electrodes), and mea­sures the resulting voltage difference on the ground sur­face between two other points (Figure 1). The current (I) and voltage (V) values are normally combined into a single quantity, the apparent resistivity, which is given by the following relationship:


Berlin 52° 31' 9.0156" N, 13° 24' 21.9276" E
8° 0' 14.8032" S, 108° 32' 41.7192" E

Контакты в Москве

Landviser в России представляет ИП "ГеоПро"

Позднякова Лариса Анатольевна, кандидат биологических наук

ул. Михаила Кутузова д.5  пос. ВНИИССОK, Московская обл. 143080

Научные Консультации по 

Электрофизике Почв, Геофизическому Оборудованию, и ГИС



Продажа Приборов и Техническая Поддержка

Лев Анатольевич Поздняков - ст. научный сотрудник ВНИИМЗ, каф. Биологии Почв, ф-та Почвоведения МГУ им. Ломоносова, кандидат биологических наук:

apl-223@mail.ru или 8 (905) 738-6503

Антонина Даниловна Позднякова - ст. научный сотрудник ВНИИМЗ, кандидат биологических наук:


Звоните нам: Пон-Пят 9:00 - 19:00 pm (время московское, GMT+3)

Е-мэйл: в любое время


Мы с прискорбием сообщаем о безвременной кончине 

Анатолия Ивановича Позднякова (20.06.1948 - 15.08.2015) 

 профессорa ф-та Почвоведения МГУ, доктора биологических наук

отца, мужа и идейного вдохновителя нашей семейной фирмы, основателя целого направления в отечественном и мировом почвоведении - "Электрофизика Почв"

Его последняя книга, "Ретроспективный взгляд из будущего или ТИПА МЕМУАРЫ" доступна для скачивания 


Cenozoic Shale Formations as a New Frontier Area - detecting shallow natural gas fields

methane emission on peat bogGuest post by Dr. Leonid Anisimov, Principal Scientist of Lukoil-Engineering, Volgograd, Russia. VolgogradNIPImorneft – scientific center of the LUKOIL Oil Company for the South Volga, Caspian Region and Middle East.

Shalow gas accumulations in shale deposits are unconventional energy resources. However those are hazardous objects for drilling especially in the offshore areas.
Seismic is a principal instrument to detect shallow gas pockets but electromagnetic methods may have advantage. The presentation below shows principal geography and techniques for detection and development of shale gas fields. A pilot project of Landviser LLC in using VES for monitoring accumulation and release of methan in peat bogs of Eastern Siberia is attached.


Houston 29° 45' 36.6948" N, 95° 22' 9.804" W
56° 52' 40.7964" N, 60° 55' 48.6336" E
43° 46' 4.5048" N, 11° 15' 8.5644" E

1D Vertical Electrical Sounding (VES) with LandMapper Procedure

standard big manual VES cable set by LandviserThe technique and procedure described here can be performed with LandMapper ERM-01 or ERM-02 (set in resistivity mode). The electrode spacings provided in this example are identical to Landviser's supplied "big manual VES" cable set made to measure 16 layers of topsoil down to approximately 9 m. The worksheet for pre-set electrode spacings in such cable re-calculating measured resistivities to 1D VES profile can be downloaded as Manual 1D VES workbook (MS Excel format).

Other electrode spacings are possible for custom-made cable arrays to reach deeper profiles. For example, we developed and tested with LandMapper a 60m-long cable, measuring down to ~ 20 m for one custom hydrology project

This manual VES technique is most convenient to use with three people. Follow step-by-step instructions below. If you need further help, do not hesitate to contact Landviser, LLC @ +1-609-412-0555 or info@landviser.com. Register on our site and download 7 related publications and software!


San Antonio 29° 25' 26.8392" N, 98° 29' 37.0608" W
Dmitrov 56° 20' 39.0192" N, 37° 31' 2.5716" E

Using LandMapper to Monitor Soil Salinity and Mitigate Its Effects on Rice Production at US Gulf Coast

Landmapper - Portable and Scalable EC meterMost of the soils along US Gulf Coast are naturally slightly saline and some are waterlogged during much of the growing season. Naturally, those areas are used for rice production rotated with cattle grazing or hay growing. Soil salinity of those areas varies spatially and temporarily due to drought, hurricane-pushed sea water surges, micro-elevation within fields, variability of salinity levels in irrigation water. Monitoring soil and water salinity with conventional techniques of collecting soil samples by farmer and sending them to outside lab is costly and time-consuming. Such approach fails to provide timely advice to the farmer regarding crop selection pre-planting and mitigation inputs during the growing season. Several rice farms affected by Katrina and Ike hurricanes were monitored in 2006-2011 utilizing field soil EC meter, LandMapper ERM-02, consumer-grade GPS, and other common equipment available to a farmer. On six test fields EC values were recorded with LandMapper directly in the field at 30 locations in less than 45 min.

Cite this presentation:

Golovko, Larisa, and Anatoly Pozdnyakov. “Using LandMapper to Monitor Soil Salinity and Mitigate Its Effects on Rice Production at US Gulf Coast.” In Making Waves: Geophysical Innovations for a Thirsty World. Tucson  AZ: Environmental and Engineering Geophysical Society, 2012. http://www.landviser.net/webfm_send/94.SAGEEP 25 - 2012 - Tucson, AZ

Registered users can download full proceeding paper: 

Using LandMapper to Monitor Soil Salinity and Mitigate Its Effects on Rice Production at US Gulf Coast


Winnie, TX 29° 49' 12.7956" N, 94° 23' 2.6808" W
SAGEEP 2012 Tucson, AZ 32° 13' 18.2748" N, 110° 55' 35.3244" W


Self-potential map to detect directions of water fluxes, KievThe self-potential (SP) method was used by Fox as early as 1830 on sulphide veins in a Cornish mine, but the systematic use of the SP and electrical resistivity methods in conventional geophysics dates from about 1920 (Parasnis, 1997). The SP method is based on measuring the natural potential differences, which generally exist between any two points on the ground. These potentials are associated with electrical currents in the soil. Large potentials are generally observed over sulphide and graphite ore bodies, graphitic shale, magnetite, galena, and other electronically highly conducting minerals (usually negative). However, SP anomalies are greatly affected by local geological and topographical conditions. These effects are considered in exploration geophysics as “noise”. The electrical potential anomalies over the highly conducting rock are usually overcome these environmental “noise”, thus, the natural electrical potentials existing in soils are usually not considered in conventional geophysics.

LandMapper ERM-02, equipped with proper non-polarizing electrodes, can be used to measure such “noise” electrical potentials created in soils due to soil-forming process and water/ion movements. The electrical potentials in soils, clays, marls, and other water-saturated and unsaturated sediments can be explained by such phenomena as ionic layers, electro-filtration, pH differences, and electro-osmosis.

Another possible environmental and engineering application of self-potential method is to study subsurface water movement. Measurements of electro-filtration potentials or streaming potentials have been used in USSR to detect water leakage spots on the submerged slopes of earth dams (Semenov, 1980). The application of self-potential method to outline water fluxes in shallow subsurface of urban soils is described in (Pozdnyakova et al., 2001). The detail description of self-potential method procedure is provided in LandMapper manual.

Another important application of LandMapper ERM-02 is measuring electrical potentials between soils and plants. Electrical balance between soil and plants is important for plant health and electrical potential gradient governs water and nutrient uptake by plants. Monitoring of electrical potentials in plants and soils is a cutting-edge research topic in the leading scientific centers around the world.


Zamboanga 7° 1' 27.3612" N, 122° 11' 20.0544" E
Kiev-Pechersk Lavra Kiev 50° 24' 59.1768" N, 30° 33' 55.836" E

Научные Консультации по геофизическим методам, приборам и компьютерным программам

Электрогеофизика в сельском хозяйстве, точном земледелии, садоводстве, лесоведении, почвенном картировании для определения засоления, каменистости и загрязнения почв, уровня залегания грунтовых вод и мощности торфяной залежи.

Ленты новостей