Skip navigation.
Enlightening Research

this site has not been updated since 2017... visit us @  to learn about new products and services!

four-electrode probe

warning: Creating default object from empty value in /home/landv0/public_html/ on line 34.

LandMapper ERM-02 - new handheld EC/ER/SP meter

LandMapper - field EC meter with lab accuracy*We have a new bath of LandMappers ERM-02 in stock! Please, contact us or +1-609-412-0555 / 888-306-LAND to discuss suitability of ERM-01 or ERM-02 for your applications.  *******

LandMapper ERM-02 is a newest device in the product line of Landviser, LLC. This portative device can measure three important electrical properties of solid, semisolid, and liquid media: electrical resistivity (ER), conductivity (EC), and potential (EP). Using the most accurate four-electrode principle LandMapper ERM-02 measures ER or EC to help new deviceyou to delineate areas with contrasting soil properties within the fields quickly, non-destructively, and cost-efficiently. Using the device prior to soil sampling you can significantly reduce the amount of samples required and precisely design a sampling plan based on the site spatial variability.

LandMapper ERM-02 measures electrical resistivity or conductivity of soils and related media for express non-destructive mapping and monitoring of agricultural fields as well as construction and remediation sites. In a typical setting, a four-electrode probe is placed on the soil surface and an electrical resistivity or conductivity value is read from the digital display. The device measures electrical resistivity or conductivity in a surface soil layer of the depth from 2 cm down to 20 m, which is set by varying the size of a four-electrode probe.

LandMapper ERM-02 is the most versatile device in LandMapper series and allows you not only measure ER and EC using artificially applied electrical current and four-electrode probes, but also study natural electrical fields in soils (self-potentials) and plants (bio-potentials) with patented non-polarizing electrodes. Electrical balance between soil and plants is important for plant health and electrical potential gradient governs water and nutrient uptake by plants. Monitoring of electrical potentials in plants and soils is a cutting-edge research topic in the leading scientific centers around the world. 

Make your own four-electrode probe for soil mapping


  • ¾” PVC pipe, one section of 10’.
  • 2 T-shaped PVC pipe connectors fitting ¾” pipe from all three ends.
  • 2 ¾” PVC cups (optional).
  • #18 AWG isolated stranded wires, red and black, 15’ each.
  • 1”x2” Velcro strip (optional).
  • 3 #6 1.5” screws for wood (optional).
  • 4-electrode probe kit (available from Landviser, LLC) including:
    • - 4 stainless steel electrodes (sharpened d= ¼” L=6” bolts)
    • - 8 stainless steel ¼” nuts for connecting electrodes with the wires
    • - 4 nylon isolated terminals for 18” AWG wire with 5/16” opening
    • - 4 banana plugs (2 black, 2 red) for connecting with LandMapper terminals

Sign up for webinar "Application of Geophysical Methods to Agriculture: Methods Employed"

Dr. Larisa Golovko (President of Landviser, LLC) will be presenting "Geophysical Methods of Electrical Resistivity and Self-Potential in Agriculture" in first of 



Agricultural Geophysics Webinar Series: "Application of Geophysical Methods to Agriculture: Methods Employed"

A live webinar on the application of geophysics to agriculture will be offered on:

Tuesday, February 18, 2014, from 3pm - 4:30pm EST
(2:00 - 3:30 CST, 1:00 - 2:30 MST, 12:00 - 1:30 PST)

This first in a series of agricultural geophysics webinars will focus on the near-surface geophysical methods presently being used for agricultural purposes, which include resistivity, self-potential, electromagnetic induction, ground penetrating radar, dielectric sensors, VIS/NIR/MIR spectrometry, gamma ray spectrometry, mechanical soil compaction sensors, and ion selective potentiometry. Five presenters will provide a short overview of agricultural geophysical methods during the first 30 minutes of the webinar. The last hour of the webinar will be devoted to a panel discussion with the presenters, who will answer questions from the audience.


28° 8' 11.7564" N, 90° 50' 5.8596" W

Kids using LandMapper to measure soil properties

Our first videos are accessible on YouTube now! Those introductory videos show how to use LandMapper for soil mapping and how simultaneously collect soil samples. It is so easy, even nine years old kids learned very quickly how to turn on the device and take measurements.

Story: Fourth graders from Bay Area Charter School in El Lago, TX were introduced to LandMapper - hand-held geophysical device - to assist them in undestanding soil properties and how they change during compaction. The project was undertaken in May 2012 to renovate high-traffic area near gym and playground of the elementary school. Kids learned how to make field observations and select areas with contrasting soil properties. They also learned that collecting soil samples by traditional methods is hard and "dirty" work. However, LandMapper can measure soil electrical resistivity (ER), a reciprocal of electrical conductivity (EC) - ER=1/EC - quickly and directly on the soil surface. Those electrical properties are related to many soil properties which reflect soil "health": compaction, stone content, salinity, fertility, texture, organic matter, and others. Using LandMapper to measure soil ER or EC prior to soil sampling can considerebly reduce time and effort in soil mapping and analysis. Best of all, LandMapper can be used anywhere - in farm fields, construction areas, flooded or frozen soils;  and by anyone - very little training is required!


BACES El Lago, TX 29° 34' 47.2656" N, 95° 2' 13.308" W

Vertical Electrical Sounding to Detect Soil Salinity in Arid Areas

total soil salinity vs resistivity by VESWater and salt content distributions within the soil profile are the main properties causing considerable variations in electrical resistivity or conductivity.  Since the evaporation in the arid areas (Astrakhan, Russia) is about five times higher than the precipitation, the water content and salt distributions are determined mainly by the saline groundwater.

The differentiation of salinity in the unsaturated zone of the soil profiles was revealed by small fluctuations of electrical resistivity in upper part of the VES profiles. We thoroughly interpreted the VES results to estimate the layers with different electrical conductivities (EC) for 12 soil profiles. The total salt content was measured in soil samples collected from the layers of the profiles as shown in Table (columns 1 and 2) for one example profile. 

LandMapper ERM-01 - simple handheld resistivity meter

Throw away your augers and soil samplers! Well, not quite... LandMapper® ERM-01 is new non invasive device, which will help you to map land parcels with contrasting soil properties within the fields quickly, non destructivelyand cost-efficiently.

Landmapper is an excellent tool for soil mapping required for environmental consulting, golf courses maintenance, construction services, farm management, new land development, and real-estate planning. It is a must have tool for forensic and archaeological investigators, even for serious treasure hunters. Using this non invasive device prior to soil sampling you can significantly reduce the amount of samples required and precisely design a sampling plan based on the site spatial variability.

LandMapper® ERM-01 measures electrical resistivity or conductivity of soils and related media for express non invasive mapping and monitoring of agricultural fields as well as construction and remediation sites. In a typical setting, a four-electrode probe is placed on the surface and an electrical resistivity value is read from the digital display. The device measures electrical resistivity in a surface layer of the depth from 2 cm down to 20 m, which is set by varying the size of a four-electrode probe. Measurements are based on well-known four-electrode principle, which allows to avoid influence of electrode contact potential on measured electrical conductivity or resistivity of the media and obtain accurate readings.  The field tests were performed by our customers in USA, Russia, China, Canada, Sweden, France, Germany, Iraq, Dubai, Brazil, Panama and many others.

Electrical Geophysical Methods to Evaluate Soil Pollution from Gas and Oil Mining

transect across bitumen polluted soil and brune collectorElectrical geophysical methods were successfully used for exploration of gas and oil fields (Kalenev, 1970). However, the methods are not widely used for estimation of the soil pollution with petroleum products (Znamensky, 1980; Pozdnyakov et al., 1996a). The possibility of using the methods of electrical resistivity to evaluate the places of petroleum pollution or natural petroleum and gas deposits is based on highly different resistivities of soil and petroleum products. Petroleum and various products of petroleum manufacture, such as oil, gasoline, bitumen, and kerosene have very high electrical resistivity compared with soils. Electrical resistivity of petroleum varies from 104 to 1019 ohm m (Fedinsky, 1967), whereas resistivity of petroleum-saturated sand is much lower (2200 ohm m) (Znamensky, 1980), but is still higher than that of any non-polluted soil.

Soil pollution by the products of gas and petroleum mining was studied near Urengoi in northwest Siberia, Russia. The virgin soils, Glacic and Aquic Haplorthels, were extremely polluted with various by-products of petroleum extraction and manufacturing, such as bitumen, gasoline, kerosene, and mining brine solutions. The study area was thoroughly investigated with four-electrode profiling on 1.2-m array and vertical electrical sounding.


Urengoj 65° 57' 27" N, 78° 23' 4.2" E

How-to use LandMapper and consumer-grade GPS data-logger to quickly map salinity on farm fields

GPS waypoints in Google EarthTask on hand: estimate salinity level on fields planned for rice next year. Six fields with total area of 322 acres were selected by farmer.

Equipment on hand: two LandMappers with different size probes attached (measuring electrical conductivity (EC) down to ~ 8” and 18”), Columbus GPS data-logger, all-road vehicle or “Mule”. Three people: farmer driving a '”mule” and recording data on paper, one person measuring with Landmapper at 18” depth, other person measuring EC with LandMapper to 8” depth and recording POI or way points with GPS. Results: 30 points recorded in less than 1.5 hour (including about 45 min break to wait out the rain). EC in the field varied from 5 mS/m to 106 mS/m on surface; and from 19 mS/m to 400 mS/m in deeper layer.


Farm Winnie, TX 29° 36' 14.6448" N, 94° 21' 7.0524" W
Syndicate content