Skip navigation.
Home
Enlightening Research

NEP

Non-contact Electromagnetic Profiling mapping method.

Unique compact geophysical devices

Landmapper hand-held resistivity meter compared with AE-72 (standard)Landviser's products include portative devices for measuring electrical properties (electrical resistivity, conductivity, and potential)  in soils, plants and other semisolid and liquid media. This equipment is small, fully computer-integrated, and easy to use. It is very competitively priced and come handy in many environmental and agricultural applications, including mapping of residential and commercial properties, construction sites, farms, and golf courses.

LandMapper ERM-01

LandMapper ERM-02

We can also help you with geophysical equipment and software distributed by our Partners. We develop and conduct online and in-person training classes for our clients and distributors. We sometimes offer used GPS units and geophysical equipment of other companies out of Landviser's inventory. Contact us for comprehensive help for your research and surveying needs.

AEMP-14 - Multi-frequency Electro-Magnetic Induction Sounding

Landviser, LLC is offering advanced equipment for multi-frequency electromagnetic sounding and profiling - AEMP-14 - manufactured by KB Electrometry Ltd in Novosibirsk, Russia.

Price of the system ordered through us is the same as listed on Nemfis.ru. Registered website users can view price of for the complete AEMP-14 system including field hand-held PDA, GPS, laptop with pre-loaded EM interpretation software and training videos in current catalog 

Please, request your personalized quotation from us: info@landviser.com or call 1-609-412-0555 / 1-888-306-LAND. The system is shipped worldwide from Russia, shipping costs will vary. See specification table at the bottom of this page on estimated weight of the system and components.

Electrical geophysical methods to outline ground water rising in urban areas

Hydrological conditions in Delta Volga, RussiaThe groundwater table rises steadily in the delta Volga, where Astrakhan’ city is located because of irrigation and rising of the Caspian Sea level. The highly saline groundwater enhances secondary salinity in the area. The groundwater caused visible destruction of more than 20% of the buildings in Astrakhan’ city. Natural hazardous groundwater condition in delta Volga was further aggravated in the urban areas by the uncontrolled leakage from the canals and plumbing pipes.

The methods of vertical electrical sounding (VES) and non-contact electromagnetic profiling (NEP) were tested in 1995 for detail outlining of the groundwater table within the representative part of Astrakhan’ city. The study area was located in the center of Astrakhan’ with a large change of elevation, which induced a high variation of groundwater table within the area.map of geophysical survey in Astrakhan City

Profiles of alluvial soils in delta Volga consist of thin layers of silt, clay, and sand. However, only water and salt content distributions within the soil profile cause considerable differentiation of the electrical resistivity in these soils. The soil profile can be generally divided into the top unsaturated layer with high resistivity and the bottom layer saturated by saline groundwater with low resistivity. Considering high distinction in electrical resistivity between unsaturated and saturated zones, the VES method was applied for detection of groundwater table. With the 1-D computer interpretation of the VES data the transition between top layer with high resistivity and bottom layer with low resistivity (i.e. groundwater table) was determined accurately. Compared with the groundwater tables measured in wells, the relative errors of the VES estimation were from 3 to 13%.

Mapping Alluvial Soils of Humid Areas with Electrical Geophysical Methods

Valley soils of humid areas are comprised of various peat and sandy soils of alluvial or lacustrine origins. These soils are located in subordinated positions in a landscape and accumulated high amounts of organic matter and mineral nutrients. Fluctuation of the river bed in space often causes highly complex soil cover in a valley. Studying those soils with conventional methods of soil mapping is very time and resource consuming. Therefore, we tested the electrical geophysical methods of non-contact electrical profiling (NEP) and electrical profiling (EP) for mapping peat and mineral alluvial soils formed in the glacial valley of Yachroma river.

The distinction in botanical structure of peat and hydrology conditions at the different zones of the valley causes distinction in physical and chemical properties of sedge-mossy, grass-woody, and mineral-peat layered soils (Figure).  The sedge-mossy peat typically has lower ash content and bulk density, and higher water content, than the grass-woody peat. Electrical resistivity of sedge-mossy peat soil is minimal (<20 ohm m) in comparison with resistivity of grass-woody (30-40 ohm m) and mineral-peat layered soils (50-60 ohm m).

Location

CPBRS Горшково, MOS 56° 22' 30.2448" N, 37° 25' 8.724" E
Syndicate content