Skip navigation.
Enlightening Research


Electrical conductivity, the inverse of resistivity. S/m is SI unit of measure. EC=1/ER

LandMapper ERM-02 - new handheld EC/ER/SP meter

LandMapper - field EC meter with lab accuracy*We have a new bath of LandMappers ERM-02 in stock! Please, contact us or +1-609-412-0555 / 888-306-LAND to discuss suitability of ERM-01 or ERM-02 for your applications.  *******

LandMapper ERM-02 is a newest device in the product line of Landviser, LLC. This portative device can measure three important electrical properties of solid, semisolid, and liquid media: electrical resistivity (ER), conductivity (EC), and potential (EP). Using the most accurate four-electrode principle LandMapper ERM-02 measures ER or EC to help new deviceyou to delineate areas with contrasting soil properties within the fields quickly, non-destructively, and cost-efficiently. Using the device prior to soil sampling you can significantly reduce the amount of samples required and precisely design a sampling plan based on the site spatial variability.

LandMapper ERM-02 measures electrical resistivity or conductivity of soils and related media for express non-destructive mapping and monitoring of agricultural fields as well as construction and remediation sites. In a typical setting, a four-electrode probe is placed on the soil surface and an electrical resistivity or conductivity value is read from the digital display. The device measures electrical resistivity or conductivity in a surface soil layer of the depth from 2 cm down to 20 m, which is set by varying the size of a four-electrode probe.

LandMapper ERM-02 is the most versatile device in LandMapper series and allows you not only measure ER and EC using artificially applied electrical current and four-electrode probes, but also study natural electrical fields in soils (self-potentials) and plants (bio-potentials) with patented non-polarizing electrodes. Electrical balance between soil and plants is important for plant health and electrical potential gradient governs water and nutrient uptake by plants. Monitoring of electrical potentials in plants and soils is a cutting-edge research topic in the leading scientific centers around the world. 

Sign up for webinar "Application of Geophysical Methods to Agriculture: Methods Employed"

Dr. Larisa Golovko (President of Landviser, LLC) will be presenting "Geophysical Methods of Electrical Resistivity and Self-Potential in Agriculture" in first of 



Agricultural Geophysics Webinar Series: "Application of Geophysical Methods to Agriculture: Methods Employed"

A live webinar on the application of geophysics to agriculture will be offered on:

Tuesday, February 18, 2014, from 3pm - 4:30pm EST
(2:00 - 3:30 CST, 1:00 - 2:30 MST, 12:00 - 1:30 PST)

This first in a series of agricultural geophysics webinars will focus on the near-surface geophysical methods presently being used for agricultural purposes, which include resistivity, self-potential, electromagnetic induction, ground penetrating radar, dielectric sensors, VIS/NIR/MIR spectrometry, gamma ray spectrometry, mechanical soil compaction sensors, and ion selective potentiometry. Five presenters will provide a short overview of agricultural geophysical methods during the first 30 minutes of the webinar. The last hour of the webinar will be devoted to a panel discussion with the presenters, who will answer questions from the audience.


28° 8' 11.7564" N, 90° 50' 5.8596" W

AEMP-14 - Multi-frequency Electro-Magnetic Induction Sounding

Landviser, LLC is offering advanced equipment for multi-frequency electromagnetic sounding and profiling - AEMP-14 - manufactured by KB Electrometry Ltd in Novosibirsk, Russia.

Price of the system ordered through us is the same as listed on Registered website users can view price of for the complete AEMP-14 system including field hand-held PDA, GPS, laptop with pre-loaded EM interpretation software and training videos in current catalog 

Please, request your personalized quotation from us: or call 1-609-412-0555 / 1-888-306-LAND. The system is shipped worldwide from Russia, shipping costs will vary. See specification table at the bottom of this page on estimated weight of the system and components.

Electrical Geophysical Methods in Agriculture

Larisa presented paper and conducted workshop on "Electrical Geophysical Methods in Agriculture" at 4th International Symposium on Intelligent Information Technology in Agriculture (ISIITA) in Beijing, China.

Calibrate (calculate) K-coefficient for laboratory four-electrode cell

LandMapper with laboratory conductivity cellsLaboratory cells supplied by Landviser, LLC have been calibrated and the respective K-geometric coefficient is printed on the cell. The cells have to be filled to the top rim, in order for the coefficient to be accurate. Also, sometimes due to corrosion of conductive plates (electrodes) the coefficient of the cell might change slightly. Thus, you can verify K-coefficient of any cell, just follow instructions below.

For other tips, download Measuring Properties of Natural Systems with LandMapper ERM-02 (manual)


USDA-ARS Washington D.C., MD 38° 53' 42.4032" N, 77° 2' 10.9176" W

Kids using LandMapper to measure soil properties

Our first videos are accessible on YouTube now! Those introductory videos show how to use LandMapper for soil mapping and how simultaneously collect soil samples. It is so easy, even nine years old kids learned very quickly how to turn on the device and take measurements.

Story: Fourth graders from Bay Area Charter School in El Lago, TX were introduced to LandMapper - hand-held geophysical device - to assist them in undestanding soil properties and how they change during compaction. The project was undertaken in May 2012 to renovate high-traffic area near gym and playground of the elementary school. Kids learned how to make field observations and select areas with contrasting soil properties. They also learned that collecting soil samples by traditional methods is hard and "dirty" work. However, LandMapper can measure soil electrical resistivity (ER), a reciprocal of electrical conductivity (EC) - ER=1/EC - quickly and directly on the soil surface. Those electrical properties are related to many soil properties which reflect soil "health": compaction, stone content, salinity, fertility, texture, organic matter, and others. Using LandMapper to measure soil ER or EC prior to soil sampling can considerebly reduce time and effort in soil mapping and analysis. Best of all, LandMapper can be used anywhere - in farm fields, construction areas, flooded or frozen soils;  and by anyone - very little training is required!


BACES El Lago, TX 29° 34' 47.2656" N, 95° 2' 13.308" W


Bedmar, A.P., and Araguás, L.A., 2002, Detection and prevention of leaks from dams: Taylor & Francis, Exton, PA.

Carrow, R.N., and Duncan, R.R., 2004, Soil salinity monitoring: present and future: Golf course management, no. November, p. 89-92.

Corwin, R., 1990, The self-potential method for environmental and engineering applications: Geotechnical and Environmental Geophysics, Soc. Expl. Geophysics, Tulsa, OK, p. 127-143.

LandMapper ERM-02 - versatile and affordable

Landmapper - field EC meter with lab accuracy

Don’t break your back collecting soil samples. Reduce amount of samples sent for laboratory analysis and save money. And still make detail soil map of your fields, which will be more accurate than conventional soil surveys. Impossible? Not at all with LandMapper ERM-02.
This device measures three important electrical properties of soil: electrical resistivity (ER), conductivity (EC), and potential (EP). Utilizing the most accurate four-electrode principle LandMapper measures ER or EC and helps delineate areas with contrasting soil properties within the fields quickly, non-destructively and cost-efficiently.

In a typical setting, a four-electrode probe is placed on the soil surface and an electrical resistivity or conductivity value is read from the digital display. Using the device prior to soil sampling you can significantly reduce the amount of samples required and precisely design a sampling plan based on the site spatial variability.
Bulk soil EC was correlated with salinity, texture, stone content, bulk density, total available nutrients, water holding capacity, and filtration rates. Guided by detailed soil EC map obtained with LandMapper, only minimal amount of soil samples is needed to invert EC map into correlated soil properties. Also, LandMapper can be used to measure EC in soil pastes, suspensions and solutions and quickly estimate total dissolved salts (TDS) in solid and liquid samples.


Beltsville 39° 2' 5.3952" N, 76° 54' 26.9064" W
34° 57' 16.8984" N, 91° 38' 52.6164" W
56° 17' 1.7628" N, 36° 59' 27.4812" E

Soil Science

Applications of electrical geophysical methods in classic Soil Science (Pedology, Soil Genesis and Classification) - browse the links and maps on this page to find out more...

Applications of LandMapper handheld for near-surface soil surveys and beyond

LandMapper - fast, portable, versatile, affordableOn-the-go sensors, designed to measure soil electrical resistivity (ER) or electrical conductivity (EC) are vital for faster non-destructive soil mapping in precision agriculture, civil and environmental engineering, archaeology and other near-surface applications. Compared with electromagnetic methods and ground penetrating radar, methods of EC/ER measured with direct current and four-electrode probe have fewer limitations and were successfully applied on clayish and saline soils as well as on highly resistive stony and sandy soils. However, commercially available contact devices, which utilize a four-electrode principle, are bulky, very expensive, and can be used only on fallow fields. Multi-electrode ER-imaging systems applied in deep geophysical explorations are heavy, cumbersome and their use is usually cost-prohibited in many near-surface applications, such as forestry, archaeology, environmental site assessment and cleanup, and in agricultural surveys on farms growing perennial horticultural crops, vegetables, or turf-grass. In such applications there is a need for accurate, portable, low-cost device to quickly check resistivity of the ground on-a-spot, especially on the sites non-accessible with heavy machinery.

Four-electrode principle of EC/ER measurements

Our equipment utilizes well-known four-electrode principle to measure electrical resistivity or conductivity (Fig).


Jonesboro, AR 35° 50' 32.2692" N, 90° 42' 15.4044" W
Krasnoyarsk 56° 0' 38.8404" N, 92° 51' 9.99" E
Syndicate content