Skip navigation.
Home
Enlightening Research

Geophysical methods

LandMapper ERM-02 - new handheld EC/ER/SP meter

LandMapper - field EC meter with lab accuracy*We have a new bath of LandMappers ERM-02 in stock! Please, contact us info@landviser.com or +1-609-412-0555 / 888-306-LAND to discuss suitability of ERM-01 or ERM-02 for your applications.  *******

LandMapper ERM-02 is a newest device in the product line of Landviser, LLC. This portative device can measure three important electrical properties of solid, semisolid, and liquid media: electrical resistivity (ER), conductivity (EC), and potential (EP). Using the most accurate four-electrode principle LandMapper ERM-02 measures ER or EC to help new deviceyou to delineate areas with contrasting soil properties within the fields quickly, non-destructively, and cost-efficiently. Using the device prior to soil sampling you can significantly reduce the amount of samples required and precisely design a sampling plan based on the site spatial variability.

LandMapper ERM-02 measures electrical resistivity or conductivity of soils and related media for express non-destructive mapping and monitoring of agricultural fields as well as construction and remediation sites. In a typical setting, a four-electrode probe is placed on the soil surface and an electrical resistivity or conductivity value is read from the digital display. The device measures electrical resistivity or conductivity in a surface soil layer of the depth from 2 cm down to 20 m, which is set by varying the size of a four-electrode probe.

LandMapper ERM-02 is the most versatile device in LandMapper series and allows you not only measure ER and EC using artificially applied electrical current and four-electrode probes, but also study natural electrical fields in soils (self-potentials) and plants (bio-potentials) with patented non-polarizing electrodes. Electrical balance between soil and plants is important for plant health and electrical potential gradient governs water and nutrient uptake by plants. Monitoring of electrical potentials in plants and soils is a cutting-edge research topic in the leading scientific centers around the world. 

SibER - multi-electrode resistivity surveying set

Landviser, LLC is offering advanced equipment for deep electrical tomography - Siber-48 - manufactured by KB Electrometry, Ltd in Novosibirsk, Russia. Since 2012 they started to produce modificated version of "SibER". New device has new safer body, powerfull generator (inject current up to 2A), provide more stable and faster measurments.

Price of the system ordered through us is the same as listed on Nemfis.ru. Registered users can view complete price of the SibER-48 and SibER-64 equipped with two standard 5-m spaced cables in current catalog. Custom spacing of electrode connectors on the cables is also available per request.

Please, request your personalized quotation from us: info@landviser.com or call 1-609-412-0555 / 1-888-306-LAND. The system is shipped worldwide from Russia, shipping costs will vary. See specification table at the bottom of this page on estimated weight of the system and components.

Evaluating cultivation level of sandy soils in European Russia with electro-geophysical methods

Electrical resistivity vs cultivation degree of sandy soils Update: Full PDF of the paper is now available!

Electrical resistivity of cultivated sandy soils of humid areas is a complex characteristic based on three fundamental properties of soil matrix, such as soil texture, total organic matter (carbon content) and cation exchange capacity (CEC). Relationship of electrical resistivity (ER) with those properties has been approximated with exponential equation ER=a*exp(-b*x), where x is any of the properties above. The correlation coefficients for ER as function of CEC, texture, or organic matter were between 0.82 and 0.91 for the soils of Klin-Dmitrov watershed near Moscow and Kirov, which suggests their applicability for other humid areas. We present a new approach to approximate exponential relationship ER=a*exp(b*x) with a linear “piece-wise” function based on the age of cultivation for each field.This approach was used to develop management zones based on ER to separate uniform areas of similar organic matter, CEC and clay content. Those basic properties are the foundation of soil fertility in humid areas. They influence biomass and bioactivity of soil microorganisms, thus the exponential relationship between ER and soil microorganisms was also observed. The approach based of electrical resistivity or conductivity was used to evaluate fertility and degree of cultivation of sandy soils in humid areas and for detail soil mapping and delineation of management zones in adaptive precision agriculture. The field and laboratory electrical geophysical methods are recommended for quick and accurate soil mapping and management in sustainable farming.

*at SAGEEP 2013, March 17-21 in Denver, CO, Larisa Golovko, Ph.D. will also present "Basic Theory of Measuring Electrical Resistivity, Conductivity and Self-Potential in Soils and Plants" with LandMapper ERM-02 and other commercially available geophysical equipment at post-conference workshop "Agricultural Geophysics: Theory and Methods".
SAGEEP 2013 logo
Cite this presentation as:

Anatoly Pozdnyakov, P.I. Eliseev, Larisa Golovko, Lev A. Pozdnyakov, Maria S. Dubrova, and E.P. Makarova. “Evaluating Cultivation Level of Sandy Soils in European Russia with Electro-geophysical Methods.” In New Views of the Earth. Denver, CO: Environmental and Engineering Geophysical Society, 2013. http://www.eegs.org/AnnualMeetingSAGEEP/SAGEEP2013/SessionsAbstracts.aspx

 

Locations

Denver 39° 44' 15.2412" N, 104° 59' 4.9848" W
Klin, MOS 56° 19' 18.5304" N, 36° 42' 30.8772" E
KIR 58° 36' 16.8984" N, 49° 39' 58.5504" E

Cenozoic Shale Formations as a New Frontier Area - detecting shallow natural gas fields

methane emission on peat bogGuest post by Dr. Leonid Anisimov, Principal Scientist of Lukoil-Engineering, Volgograd, Russia. VolgogradNIPImorneft – scientific center of the LUKOIL Oil Company for the South Volga, Caspian Region and Middle East.

Shalow gas accumulations in shale deposits are unconventional energy resources. However those are hazardous objects for drilling especially in the offshore areas.
Seismic is a principal instrument to detect shallow gas pockets but electromagnetic methods may have advantage. The presentation below shows principal geography and techniques for detection and development of shale gas fields. A pilot project of Landviser LLC in using VES for monitoring accumulation and release of methan in peat bogs of Eastern Siberia is attached.

Locations

Houston 29° 45' 36.6948" N, 95° 22' 9.804" W
56° 52' 40.7964" N, 60° 55' 48.6336" E
43° 46' 4.5048" N, 11° 15' 8.5644" E

1D Vertical Electrical Sounding (VES) with LandMapper Procedure

standard big manual VES cable set by LandviserThe technique and procedure described here can be performed with LandMapper ERM-01 or ERM-02 (set in resistivity mode). The electrode spacings provided in this example are identical to Landviser's supplied "big manual VES" cable set made to measure 16 layers of topsoil down to approximately 9 m. The worksheet for pre-set electrode spacings in such cable re-calculating measured resistivities to 1D VES profile can be downloaded as Manual 1D VES workbook (MS Excel format).

Other electrode spacings are possible for custom-made cable arrays to reach deeper profiles. For example, we developed and tested with LandMapper a 60m-long cable, measuring down to ~ 20 m for one custom hydrology project

This manual VES technique is most convenient to use with three people. Follow step-by-step instructions below. If you need further help, do not hesitate to contact Landviser, LLC @ +1-609-412-0555 or info@landviser.com. Register on our site and download 7 related publications and software!

Locations

San Antonio 29° 25' 26.8392" N, 98° 29' 37.0608" W
Dmitrov 56° 20' 39.0192" N, 37° 31' 2.5716" E

Evaluation of stone contents in soils with electrical geophysical methods to aid orchard planning

VES of stony soils in Crimea

Establishments of orchards and vineyards are long-term and money-intensive, but highly pay-off projects. This study allowed developing procedure for incorporating geophysical survey data into recommendations of usage skeletal soils under orchards. Geophysical methods of electrical resistivity, such as VES and four-electrode profiling provided the information about spatial distributions of stones in skeletal soils.  The resistivity of rocks or stones is much higher (about 104-1012 ohm m) than the resistivity of soil horizons with any texture. Therefore, high resistivity will indicate the presence of stones in soil profiles.

Study was conducted on skeletal soils (Paleoxerolls and Lithic Xerorthents) formed on carbonate-cemented marine deposit, limestone, or pebbles of alluvial origin in western part of Crimea Peninsula, Ukraine. The stone content varied from 2 to 90% of fragments coarse than 2 mm by volume and stony layers occurred in soil profiles at the depth as shallow as 12 cm.

Location

Saky

Electrical Geophysical Methods to Evaluate Soil Pollution from Gas and Oil Mining

transect across bitumen polluted soil and brune collectorElectrical geophysical methods were successfully used for exploration of gas and oil fields (Kalenev, 1970). However, the methods are not widely used for estimation of the soil pollution with petroleum products (Znamensky, 1980; Pozdnyakov et al., 1996a). The possibility of using the methods of electrical resistivity to evaluate the places of petroleum pollution or natural petroleum and gas deposits is based on highly different resistivities of soil and petroleum products. Petroleum and various products of petroleum manufacture, such as oil, gasoline, bitumen, and kerosene have very high electrical resistivity compared with soils. Electrical resistivity of petroleum varies from 104 to 1019 ohm m (Fedinsky, 1967), whereas resistivity of petroleum-saturated sand is much lower (2200 ohm m) (Znamensky, 1980), but is still higher than that of any non-polluted soil.

Soil pollution by the products of gas and petroleum mining was studied near Urengoi in northwest Siberia, Russia. The virgin soils, Glacic and Aquic Haplorthels, were extremely polluted with various by-products of petroleum extraction and manufacturing, such as bitumen, gasoline, kerosene, and mining brine solutions. The study area was thoroughly investigated with four-electrode profiling on 1.2-m array and vertical electrical sounding.

Location

Urengoj 65° 57' 27" N, 78° 23' 4.2" E

Electrical Geophysical Methods in Agriculture

Agriculture: a budding field in geophysicsMapping alluvial soils of humid areas with electrical geophysical methods: We tested the electrical geophysical methods of non-contact electrical profiling (NEP) and electrical profiling (EP) for mapping peat and mineral alluvial soils formed in the glacial valley of Yachroma river. More >>

Vertical Electrical Sounding to detect groundwater levels in arid areas: The approximate location of the groundwater table was estimated by a visual inspection of the VES curve. The AB/2 value with the sharp change to the low resistivity (3-20 ohm m) was selected from each VES profile...More >>

Evaluation of stone contents in soils with electrical geophysical methods to aid orchard planning: Geophysical methods of electrical resistivity, such as VES and four-electrode profiling provided the information about spatial distributions of stones in skeletal soils.  High resistivity will indicate the presence of stones in soil profiles. More >>

Application of the geophysical methods of electrical resistivity in precision farming:  One of the challenges facing the adoption of precision agriculture technology is the identification of productivity-related variability of soil properties accurately and cost-effectively. More >>

LandMapper, NEP, and Self-Potential methods for Forensic and Archaeological Applications

detect burial places under uniform grass

Four-electrode probe for detection of burial places of criminal origin

We used electrical geophysical methods to measure the disturbance of the soil together with the properties of a hidden object itself. The study was conducted in collaboration with Russian Ministry of Internal Affairs to test methods for fast outlining soil disturbance places to help criminological search. The method is based on measurements of soil bulk electrical resistivity and principles of soil formation.

 

complex geophysical investigations in Kiev, Ukraine

Electrical geophysical methods to study subsurface water movement in urban areas

Hazardous hydrological situation caused by unknown factors appeared in Kiev-Pechersk Lavra (Kiev, Ukraine) near The Church of Holy Cross Elevation in 1987. The problem was attributable to temporary subsurface water fluxes fed by precipitation. Methods of 4-electrode profiling, vertical electrical sounding, and self-potential were utilized.

   

Locations

Westampton, NJ 40° 1' 14.1528" N, 74° 47' 31.992" W
Zelinograd, MOS 55° 59' 24.2736" N, 37° 9' 43.47" E
Kiev 50° 27' 0.36" N, 30° 31' 24.24" E
Syndicate content