Skip navigation.
Enlightening Research

Soil Science

This summary page presents all resources on our website and external sites related to Soil Science (aka Pedology and Soil Genesis). Scroll down and explore do-it-yourself tips, blogs, maps, tweets and links to our publications and case studies. As this content is highly dymanic, make sure to bookmark this page and visit often.

DIY Soil Survey Tips

how to use our equipment and software

How-to use LandMapper and consumer-grade GPS data-logger to quickly map salinity on farm fields

GPS waypoints in Google EarthTask on hand: estimate salinity level on fields planned for rice next year. Six fields with total area of 322 acres were selected by farmer.

Equipment on hand: two LandMappers with different size probes attached (measuring electrical conductivity (EC) down to ~ 8” and 18”), Columbus GPS data-logger, all-road vehicle or “Mule”. Three people: farmer driving a '”mule” and recording data on paper, one person measuring with Landmapper at 18” depth, other person measuring EC with LandMapper to 8” depth and recording POI or way points with GPS. Results: 30 points recorded in less than 1.5 hour (including about 45 min break to wait out the rain). EC in the field varied from 5 mS/m to 106 mS/m on surface; and from 19 mS/m to 400 mS/m in deeper layer.


Farm Winnie, TX 29° 36' 14.6448" N, 94° 21' 7.0524" W

Quick Estimation of Salinity in Field Soils and Irrigation Water with LandMapper ERM-02

ec mapping with Landmapper on dead rice field after hurracaine IkeSoil salinity is routinely evaluated in the labs from electrical conductivity of liquid soil saturation extract (ECe). The resulted total salinity is reported either directly in conductivity units (dS/m) or converted to TDS (total dissolved solids) concentration in ppm (parts per million) using formula: 1 dS/m = 1 mS/cm = 1 mmho/cm = 640 ppm = 640 mg/L= 0.64 g/L=0.064%

But now EC of soil and waters can be measured directly in the field using highly accurate method of four-electrode probe and Landmapper ERM-02 measuring device. Best of all, probes can be build to sense different soil layers down to 30 ft! Probes are simple and inexpensive to make from common materials available at any hardware store.

For irrigation water and soil solutions: To measure ECw just put 4-electrode probe of Landmapper used for mapping into a ditch, canal, or other water source. Make sure that all 4-electrodes are in contact with water. Take a reading in EC (conductivity) mode. Display will read (example):  
K0*C= 150m  - which indicates milli Siemens (mS/m)
To convert to dS/m, divide display number by 100, i.e. 150 mS/m=1.5 dS/m.

1D Vertical Electrical Sounding (VES) with LandMapper Procedure

standard big manual VES cable set by LandviserThe technique and procedure described here can be performed with LandMapper ERM-01 or ERM-02 (set in resistivity mode). The electrode spacings provided in this example are identical to Landviser's supplied "big manual VES" cable set made to measure 16 layers of topsoil down to approximately 9 m. The worksheet for pre-set electrode spacings in such cable re-calculating measured resistivities to 1D VES profile can be downloaded as Manual 1D VES workbook (MS Excel format).

Other electrode spacings are possible for custom-made cable arrays to reach deeper profiles. For example, we developed and tested with LandMapper a 60m-long cable, measuring down to ~ 20 m for one custom hydrology project

This manual VES technique is most convenient to use with three people. Follow step-by-step instructions below. If you need further help, do not hesitate to contact Landviser, LLC @ +1-609-412-0555 or Register on our site and download 7 related publications and software!


San Antonio 29° 25' 26.8392" N, 98° 29' 37.0608" W
Dmitrov 56° 20' 39.0192" N, 37° 31' 2.5716" E

The Science of Soil Surveying...

our case studies in classic Soil Science

Applications of LandMapper handheld for near-surface soil surveys and beyond

LandMapper - fast, portable, versatile, affordableOn-the-go sensors, designed to measure soil electrical resistivity (ER) or electrical conductivity (EC) are vital for faster non-destructive soil mapping in precision agriculture, civil and environmental engineering, archaeology and other near-surface applications. Compared with electromagnetic methods and ground penetrating radar, methods of EC/ER measured with direct current and four-electrode probe have fewer limitations and were successfully applied on clayish and saline soils as well as on highly resistive stony and sandy soils. However, commercially available contact devices, which utilize a four-electrode principle, are bulky, very expensive, and can be used only on fallow fields. Multi-electrode ER-imaging systems applied in deep geophysical explorations are heavy, cumbersome and their use is usually cost-prohibited in many near-surface applications, such as forestry, archaeology, environmental site assessment and cleanup, and in agricultural surveys on farms growing perennial horticultural crops, vegetables, or turf-grass. In such applications there is a need for accurate, portable, low-cost device to quickly check resistivity of the ground on-a-spot, especially on the sites non-accessible with heavy machinery.

Four-electrode principle of EC/ER measurements

Our equipment utilizes well-known four-electrode principle to measure electrical resistivity or conductivity (Fig).


Jonesboro, AR 35° 50' 32.2692" N, 90° 42' 15.4044" W
Krasnoyarsk 56° 0' 38.8404" N, 92° 51' 9.99" E

Mapping Alluvial Soils of Humid Areas with Electrical Geophysical Methods

Valley soils of humid areas are comprised of various peat and sandy soils of alluvial or lacustrine origins. These soils are located in subordinated positions in a landscape and accumulated high amounts of organic matter and mineral nutrients. Fluctuation of the river bed in space often causes highly complex soil cover in a valley. Studying those soils with conventional methods of soil mapping is very time and resource consuming. Therefore, we tested the electrical geophysical methods of non-contact electrical profiling (NEP) and electrical profiling (EP) for mapping peat and mineral alluvial soils formed in the glacial valley of Yachroma river.

The distinction in botanical structure of peat and hydrology conditions at the different zones of the valley causes distinction in physical and chemical properties of sedge-mossy, grass-woody, and mineral-peat layered soils (Figure).  The sedge-mossy peat typically has lower ash content and bulk density, and higher water content, than the grass-woody peat. Electrical resistivity of sedge-mossy peat soil is minimal (<20 ohm m) in comparison with resistivity of grass-woody (30-40 ohm m) and mineral-peat layered soils (50-60 ohm m).


CPBRS Горшково, MOS 56° 22' 30.2448" N, 37° 25' 8.724" E

Vertical Electrical Sounding to Detect Soil Salinity in Arid Areas

total soil salinity vs resistivity by VESWater and salt content distributions within the soil profile are the main properties causing considerable variations in electrical resistivity or conductivity.  Since the evaporation in the arid areas (Astrakhan, Russia) is about five times higher than the precipitation, the water content and salt distributions are determined mainly by the saline groundwater.

The differentiation of salinity in the unsaturated zone of the soil profiles was revealed by small fluctuations of electrical resistivity in upper part of the VES profiles. We thoroughly interpreted the VES results to estimate the layers with different electrical conductivities (EC) for 12 soil profiles. The total salt content was measured in soil samples collected from the layers of the profiles as shown in Table (columns 1 and 2) for one example profile. 

Evaluation of stone contents in soils with electrical geophysical methods to aid orchard planning

VES of stony soils in Crimea

Establishments of orchards and vineyards are long-term and money-intensive, but highly pay-off projects. This study allowed developing procedure for incorporating geophysical survey data into recommendations of usage skeletal soils under orchards. Geophysical methods of electrical resistivity, such as VES and four-electrode profiling provided the information about spatial distributions of stones in skeletal soils.  The resistivity of rocks or stones is much higher (about 104-1012 ohm m) than the resistivity of soil horizons with any texture. Therefore, high resistivity will indicate the presence of stones in soil profiles.

Study was conducted on skeletal soils (Paleoxerolls and Lithic Xerorthents) formed on carbonate-cemented marine deposit, limestone, or pebbles of alluvial origin in western part of Crimea Peninsula, Ukraine. The stone content varied from 2 to 90% of fragments coarse than 2 mm by volume and stony layers occurred in soil profiles at the depth as shallow as 12 cm.